Antenna gain is measured in either dBi or dBd.
It is important to note that antenna gain is different than amplifier gain. Antennas do not have a power source that allows the antenna to create additional energy to boost the signal. An antenna is similar to a reflective lens in principle - it takes the energy available from the source and focuses it over a wider or narrower area.
Antenna gain is then a measure of the amount of focus that an antenna can apply to the incoming signal relative to one of two reference dispersion patterns. Digi specifies all antenna gains in dBi.
dBi is the amount of focus applied by an antenna with respect to an "Isotropic Radiator" (a dispersion pattern that radiates the energy equally in all directions onto an imaginary sphere surrounding a point source). Thus an antenna with 2.1 dBi of gain focuses the energy so that some areas on an imaginary sphere surrounding the antenna will have 2.1 dB more signal strength than the strength of the strongest spot on the sphere around an Isotropic Radiator.
dBd refers to the antenna gain with respect to a reference dipole antenna. A reference dipole antenna is defined to have 2.15 dBi of gain. So converting between dBi and dBd is as simple as adding or subtracting 2.15 according to these formulas:
-
dBi = dBd + 2.15
-
dBd = dBi - 2.15
Specifying antenna gain in dBd means that the antenna in question has the ability to focus the energy x dB more than a dipole.
Beam Width
Because higher gain antennas achieve the extra power by focusing in on a smaller area it is important to remember that the greater the gain, the smaller the area covered as measured in degrees of beam width (think of an adjustable beam flashlight). In many cases a high gain antenna is a detriment to the system performance because the system needs to have reception over a large area.
Last updated:
Aug 23, 2017